Cost advice for the implementation of tram and bus systems

Road and Transportation Research Association of Germany (FGSV)
Task force 1.5.3 : Bus systems with high capacity

for the task force 1.5.3

Obering. Dr. Volker Deutsch
University of Wuppertal
Department of Civil Engineering
Centre of Traffic and Transport
Institute for Public Transport in Europe
Please do not compare apples with pears!

To make it clear: this is not a cost comparison between a tram system and a normal bus service.

Within this cost comparison the focus is on two transport systems of comparable high quality: a tram system and a bus system.
Preconditions for comparing the cost of bus and tram

1. Each has its own right-of-way. The right-of-way has to be integrated into the urban environment.
FGSV AA1.5/AA1.6
Task force AK 1.5.3
Bus systems with high capacity

Preconditions

Introduction

Volker Deutsch: Cost advice for the implementation of tram and bus systems
FGSV AA1.5/AA1.6
Task force AK 1.5.3
Bus systems with high capacity

Introduction

Preconditions

Projection

Investment costs

Annual full costs

Variant comparison

Final results

urban integrated busway

urban integrated tram track

Volker Deutsch : Cost advice for the implementation of tram and bus systems
We expect operating benefits as well as positive spin-off effects and emotional esteem on a comparable level with an integrated urban right-of-way system independent whether it is a bus or a tram.
Preconditions for comparing the cost of bus and tram

1. Each has its own **right-of-way**. The right-of-way has to be integrated into **the urban environment**.

2. Furthermore the deployment of vehicles of **identical capacity** will help to ensure that staff efficiency and service frequency are equal.
Introduction

Preconditions

Projection

Investment costs

Annual full costs

Variant comparison

Final results

Using vehicles with the same capacity, **staff efficiency** and **service frequency** are equal.
Preconditions for comparing the cost of bus and tram

1. Each has its own **right-of-way**. The right-of-way has to be integrated into **the urban environment**.

2. Furthermore the deployment of vehicles of **identical capacity** will help to ensure that staff efficiency and service frequency are equal.

3. The basis for the system cost comparison is provided by the construction of a **new** PT system. This is the only possible way in which to produce a uniform basis for the calculation of debt servicing.
Simplified projection for cost comparison

two lines (route length in total 20km)
5-min-frequency on both lines
3000 route circulations per year with 32 vehicles
trip speed: 20 km/h

Volker Deutsch: Cost advice for the implementation of tram and bus systems
Investment costs

<table>
<thead>
<tr>
<th>Cost centres</th>
<th>Bi-articulated bus running on right-of-way track</th>
<th>Tramway running on right-of-way track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs of planning and building preparations</td>
<td>€15 million</td>
<td>€32 million</td>
</tr>
<tr>
<td>Land acquisition</td>
<td>€12 million</td>
<td>€12 million</td>
</tr>
<tr>
<td>Civil engineering work</td>
<td>€10-30 million</td>
<td>€30 million</td>
</tr>
<tr>
<td>PT right-of-way construction</td>
<td>€10 million</td>
<td>€28 million</td>
</tr>
<tr>
<td>Current supply for operations</td>
<td>-</td>
<td>€16 million</td>
</tr>
<tr>
<td>Costs of stopping points</td>
<td>€10 million</td>
<td>€10 million</td>
</tr>
<tr>
<td>Costs of restructuring the road space</td>
<td>€70-80 million</td>
<td>€80 million</td>
</tr>
<tr>
<td>Communication, information, retail systems</td>
<td>€16 million</td>
<td>€16 million</td>
</tr>
<tr>
<td>Traffic signal prioritisation</td>
<td>€12 million</td>
<td>€12 million</td>
</tr>
<tr>
<td>Investment expenditure on vehicles (No. 32)</td>
<td>€16 million</td>
<td>€80 million</td>
</tr>
<tr>
<td>Subtotal</td>
<td>ca. €170-200 million</td>
<td>ca. €320 million</td>
</tr>
<tr>
<td>Overall system costs</td>
<td>ca. €8.5 million/route-km</td>
<td>ca. €16 million/route-km</td>
</tr>
<tr>
<td>Maintenance and storage facility</td>
<td>€10 million</td>
<td>€25 million</td>
</tr>
<tr>
<td>Estimated capital expenditure on notional comparison system (20 km track length)</td>
<td>≤ €210 million</td>
<td>€345 million</td>
</tr>
</tbody>
</table>

1 Financial assistance for investments and special subsidies are not taken into account. Capacity per vehicle: 145 passengers.
Investment costs

<table>
<thead>
<tr>
<th>Cost centres</th>
<th>Bi-articulated bus running on right-of-way track</th>
<th>Tramway running on right-of-way track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs of planning and building preparations</td>
<td>€15 million</td>
<td>€32 million</td>
</tr>
<tr>
<td>Land acquisition</td>
<td>€12 million</td>
<td>€12 million</td>
</tr>
<tr>
<td>Civil engineering work</td>
<td>€10-30 million</td>
<td>€30 million</td>
</tr>
<tr>
<td>PT right-of-way construction</td>
<td>€10 million</td>
<td>€28 million</td>
</tr>
<tr>
<td>Current supply for operations</td>
<td>-</td>
<td>€16 million</td>
</tr>
<tr>
<td>Costs of stopping points</td>
<td>€10 million</td>
<td>€10 million</td>
</tr>
<tr>
<td>Costs of restructuring the road space</td>
<td>€70-80 million</td>
<td>€80 million</td>
</tr>
<tr>
<td>Communication, information, retail systems</td>
<td>€16 million</td>
<td>€16 million</td>
</tr>
<tr>
<td>Traffic signal prioritisation</td>
<td>€12 million</td>
<td>€12 million</td>
</tr>
<tr>
<td>Investment expenditure on vehicles (No. 32)</td>
<td>€16 million</td>
<td>€80 million</td>
</tr>
<tr>
<td>Subtotal</td>
<td>ca. €170-200 million</td>
<td>ca. €320 million</td>
</tr>
<tr>
<td>Overall system costs</td>
<td>ca. €8.5 million/route-km</td>
<td>ca. €16 million/route-km</td>
</tr>
<tr>
<td>Maintenance and storage facility</td>
<td>€10 million</td>
<td>€25 million</td>
</tr>
</tbody>
</table>

1 Financial assistance for investments and special subsidies are not taken into account. Capacity per vehicle: 145 passengers.
Annual full cost of PT operation

Introduction

Preconditions

Projection

Investment costs

Annual full costs

Variant comparison

Final results

Annual full cost of PT operation

Variant comparison

Final results

Assumptions:

- **Annual mileage:** 60,000 km
- **Operating hours:** 3,500 h
- **Driver costs:** 28 €/h
- **Interest rate:** 3%
- **Vehicle capacity:** 145 passengers

Volker Deutsch: Cost advice for the implementation of tram and bus systems
<table>
<thead>
<tr>
<th>Vehicle category</th>
<th>Bi-articulated bus</th>
<th>Bi-articulated bus</th>
<th>Tramway</th>
<th>High-capacity bus</th>
<th>Tramway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle length</td>
<td>25.00m</td>
<td>25.00m</td>
<td>28.00m</td>
<td>20.00m</td>
<td>40.00m</td>
</tr>
<tr>
<td>Vehicle width</td>
<td>2.55m</td>
<td>2.55m</td>
<td>2.30m</td>
<td>2.55m</td>
<td>2.65m</td>
</tr>
<tr>
<td>Vehicle capacity</td>
<td>145 persons</td>
<td>145 persons</td>
<td>145 persons</td>
<td>120 persons</td>
<td>240 persons</td>
</tr>
<tr>
<td>Service frequency</td>
<td>5-min headway</td>
<td>5-min headway</td>
<td>5-min headway</td>
<td>4-min headway</td>
<td>8-min headway</td>
</tr>
<tr>
<td>No. vehicles</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>37</td>
<td>21</td>
</tr>
<tr>
<td>Vehicle hallmark</td>
<td>diesel</td>
<td>electric</td>
<td>electric</td>
<td>diesel</td>
<td>electric</td>
</tr>
<tr>
<td>Full costs of PT operation per vehicle unit</td>
<td>€6.29/km</td>
<td>€7.41/km</td>
<td>€9.40/km</td>
<td>€5.50/km</td>
<td>€12.90/km</td>
</tr>
<tr>
<td>Full costs of PT operation per seat-km</td>
<td>Ct4.34/km</td>
<td>Ct5.11/km</td>
<td>Ct6.48/km</td>
<td>Ct4.58/km</td>
<td>Ct5.37/km</td>
</tr>
</tbody>
</table>
Variant comparison at identical hourly demand

71%

120 [4 pers./ sqm]
4-min-headway

67%

145 [4 pers./ sqm]
5-min-headway

79%

145 [4 pers./ sqm]
5-min-headway

100%

145 [4 pers./ sqm]
5-min-headway

83%

240 [4 pers./ sqm]
8-min-headway

Volker Deutsch: Cost advice for the implementation of tram and bus systems
Variant comparison at identical hourly demand

71%
120 [4 pers./ sqm]
4-min-headway

67%
145 [4 pers./ sqm]
5-min-headway

79%
145 [4 pers./ sqm]
5-min-headway

100%
145 [4 pers./ sqm]
5-min-headway

83%
240 [4 pers./ sqm]
8-min-headway
Results of the economic analysis for newly-created systems

The deployment of **diesel-powered** low emission high-capacity buses as BRT on an integrated urban busway is clearly superior in **business terms**.

For **electric drive systems** (bi-articulated trolleybus with overhead catenary), **cost parity** is theoretically possible by means of a doubling of headway and a correspondingly high transport capacity for tramway (> 240 persons).
System cost comparison is finished – but what about the benefits!

Is it possible for a high-capacity bus as BRT on an integrated urban busway, to achieve operating benefits as well as positive spin-off effects and emotional esteem like a tram?
Rouen, TEOR

Already at the planning stage several investors bought houses along the TEOR lines.

Facade to facade urban renewal

Re-design of city centre streets

Change of retailing character

Highly recommended in last satisfaction survey (2004)

Overall speed and regularity have clearly increased

source: local authorities and author's own survey; first picture by W. Kutil
Amsterdam, Zuidtangente

Patronage up to 99% higher than estimated
Schools, shopping centres etc. are built along the route

Source: local authorities and author's own survey; first and third picture by Stadsregio Amsterdam
Eindhoven, Phileas

Planning of a new north-south lane started, to connect Nuenen-West with the High Tech Campus in the south

Fully integrated bus lanes in new housing area Meerhoven and office site Flight Forum

source: local authorities and author’s own survey; second picture by Gemeente Eindhoven
Kent, Fastrack

A survey in Oct 2006 revealed that
- 26% of the passengers said they had a car available but chose to use Fastrack.
- 19% said they would previously have made the trip by car.

source: local authorities and author's own survey; pictures: PTI No.5/2007
Nantes, BusWay

Re-design of city streets and dismantling of an urban motorway

Strong political support, re-election of the mayor

30% of passengers previously would have made the trip by car.

Low number of accidents in 2006/07

- BusWay : 1.8/100,000km
- tram : 3.6/100,000km
- normal bus service: 5.1/100,000km

source: local authorities and author's own survey
What about the fare income?

„Does an integrated urban bus system appear to citizens as attractive as a tram? Will it be used more often, and does that lead to a rise in fares?“

pictures: Ch. Groneck / Comunidad Curitiba
<table>
<thead>
<tr>
<th>Variant</th>
<th>2001</th>
<th>2002</th>
<th>Phase II</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zuidtangente</td>
<td>21,500</td>
<td>21,500</td>
<td>6,772 mio. pass per year</td>
<td>9,979</td>
<td></td>
</tr>
<tr>
<td>Phileas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,830</td>
<td>6,595</td>
<td>7,850</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+13%</td>
<td>+19%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastrack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+22%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BusWay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16,000</td>
<td>25,000</td>
<td>28,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+54%</td>
<td>+12%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volker Deutsch: Cost advice for the implementation of tram and bus systems
The three major results ...

An integrated urban bus system has **economic advantages** compared to a low-capacity tram.

The external benefits of an integrated urban bus system are **similar** to a tram system.

It will always be difficult to convince politicians to transfer the **system idea** to the “flexible” bus. In comparison the tram has a legitimately and technically exceptional position.
Cost advice for the implementation of tram and bus systems

Road and Transportation Research Association of Germany (FGSV)
Task force 1.5.3: Bus systems with high capacity
FGSV Verlag GmbH
W1 No. 150
ISBN 978-3-939715-60-3
Published in German with an English executive summary

Hinweise zu Systemkosten von Busbahn und Straßenbahn bei Neueinführung

Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV)
Arbeitskreis 1.5.3: Bussysteme hoher Kapazität

Mitglieder: Markus Balke, Mannheim; Volker Deutsch, Wuppertal; Burkhard Eberwein, Berlin; Hansjörg Feurer, Zürich (Schweiz); Andreas Ferlic, Wuppertal; Manfred Hester, Hamburg; Harry Hondius, Beaufays (Belgien); Jean H. G. Jacobs, Utrecht (Niederlande); Wolfgang Marahrens, Hamburg; Bernhard E. Nickel, Köln; Hermann Paetz, Aachen; Claude Soulas, Paris (Frankreich); Gäste: Jan Andrés Benöhr, Bremen; Ralph Pütz, Köln; Arno Kerkhof, Brüssel (Belgien)